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Abstract: We report on the investigation of symmetrical properties of lithium niobate 
(LiNbO3) domain walls utilizing the nonlinear Cherenkov radiation. Compared with LiNbO3 
bulk crystals, new nonzero elements of the χ(2) tensor at domain walls are found by the 
Cherenkov second harmonic generation (CSHG) and Cherenkov sum frequency generation 
(CSFG) measurement. Experimentally, we demonstrate the symmetry reduction of domain 
walls, where the mirror inversion symmetry of LiNbO3 lattice is broken while the threefold 
rotational symmetry still remains. 
© 2016 Optical Society of America 
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1. Introduction 

Periodically poled ferroelectrics are designed to achieve quasi-phase-matching proposed by 
Bloembergen in 1962 [1], which can significantly improve the efficiency in nonlinear 
frequency conversion. Over the past decades, periodically poled crystals such as LiNbO3 
(PPLN), KTiOPO4 (PPKTP) and LiTaO3 (PPLT) have been widely used in optical parameter 
processes and kinds of nonlinear optical phenomena are observed in these media, such as 
nonlinear Bragg diffraction [2, 3], nonlinear Raman-Nath diffraction [4, 5] as well as 
nonlinear Cherenkov radiation (NCR) [6–8]. Domain walls, the boundaries between positive 
and negative domains in ferroelectrics, reveal specific properties such as conductivity, 
mobility and symmetry different from the bulk medium and have a promising application in 
nanoscale functional devices [9, 10]. In recent years, much attention has been paid to the 
research on novel properties and applications of domain walls. And many detection and 
visualization methods have been developed to explore the inner structure of domain walls, 
mainly including optical imaging and scanning probe microscopy [10–12]. Nevertheless, the 
mechanism of enhanced nonlinear parametric processes in domain walls is still controversial 
[13, 14], and one convincing explanations attributes it to the new enhanced susceptibility 
tensor owing to the lattice distortion [15] and the localized internal electrical field [16], which 
directly demonstrates different symmetrical properties of domain walls [17]. 

Meanwhile, the nonlinear Cherenkov radiation (NCR) is a nondestructive nonlinear 
measurement with high precision in probing domain wall nonlinearities [15–19]. Analogous 
to the Cherenkov radiation emitted by relativistic charged particles, the nonlinear polarization 
(NP) which is driven by the fundamental wave (FW) generates the NCR when its phase 
velocity exceeds that of the harmonic wave (HW) in nonlinear media [20, 21]. Since the NCR 
generated by domain walls is much more significant than domain region owing to the 
confinement of NP, the structural and symmetrical properties of domain walls can be 
measured reliably and efficiently. In addition, this NCR measurement is much simpler and 
more achievable than other scanning probe microscopy techniques. 

In this paper, to obtain the entire second-order susceptibility tensor of PPLN domain walls 
qualitatively and investigate the difference between domain walls and bulk medium, we detect 
the polarization of the CSHG and CSFG while changing the incident beam. And based on the 
new nonzero elements in the ( )2χ  tensor, the symmetry properties of domain walls of PPLN 
are demonstrated, which may push forward the research on the inner structure and the 
susceptibility of domain walls. 

2. Theoretical model 

For second-order nonlinear processes in LiNbO3, the NP can be expressed by the FW and the
( )2χ  susceptibility tensor [1] in the form of: 
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Considering the process of NCR at domain walls, the probe of symmetry reduction can be 
observed by monitoring the emitted HW generated through CSHG and CSFG. Since the 
CSHG and CSFG carry the information of domain walls in the NCR processes, the ( )2χ  
tensor of domain walls can be fully determined by detecting their polarizations based on Eq. 
(1). 

In our experiment, a mode-locked Nd:YAG laser (1064 nm) is employed as the FW 
source, which delivers 10.5-ns pulses with 5 mJ per pulse energy at a repetition of 1 kHz. The 
dimension of the z-cut periodically poled 5mol% MgO:LiNbO3 sample (the optical axis is 
along the z direction) is 320 4 1mm ( )x y z× × × × . The poling period Λ is 30 μm and the duty 

radio is 45%. The domain walls of PPLN are parallel to the y-z plane. As shown in Fig. 1(a), 
the FW is divided into a p(parallel)-polarized wave and a s(senkrecht)-polarized wave by a 
polarized beam splitter. The polarization of the beams is adjusted by two half-wave plates at 
1064 nm, respectively, and then focused to overlap spatially in PPLN by two separate lens. At 
last, a 532 nm polarizer is utilized to check the polarization of the generated HWs. 

3. Experimental results 

3.1 NCR perpendicular to the optical axis of PPLN 

Experimentally, the normal incidence 
1ω  in Fig. 1(a) was employed in the CSHG, and both 

1ω  and 
2ω  were for the CSFG. 

 

Fig. 1. (a) Schematic experimental setup. (b) The CSHG with the s-polarized normal incidence 

1ω . (c) The CSHG with the p-polarized normal incidence 
1ω . (d) The CSFG with the p-

polarized normal incidence 
1ω  and the s-polarized oblique incidence 

2ω . (e) Exchange the 

polarization of the incident beams in (d). 

In the CSHG process, when the FW was s-polarized, which means its electric component 
was 

zE , the symmetrical spots were the CSHGs in Fig. 1(b). The spots in the middle were 

caused by the nonlinear Raman-Nath diffraction [5]. These Cherenkov spots were s-polarized 
when checked by a 532 nm polarizer, which means the HW had the electric component of 

(2 )zE ω  and the NP wave had the component of (2 )zP ω . Thus the effective value of d  can be 

written as 
33effd d=  in this NCR process. In addition, (2 )xE ω  and (2 )yE ω  had not been 

observed on the screen, so 
13 23 0d d= =  and 

33 0d ≠  in the susceptibility tensor of domain 

walls, corresponding to the ee-e phase match type. 
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For the p-polarized incidence, namely the electric component was 
xE , the symmetrical 

Cherenkov spots were also p-polarized (see Fig. 1(c)). Considering the oblique outgoing 
beam, the HW possessed the components (2 )xE ω  and (2 )yE ω . Accordingly, 

11 21sin coseffd d d ϕϕ= −  for oo-o phase match in this process, where ϕ  is the azimuthal angle 

of the polarization of HW with respect to the positive x axis. Then
11 0d ≠  and 

21 0d ≠  based 

on Eq. (1) whereas 
11 0d =  in bulky LiNbO3. However, 

31d  can’t be determined since the 

NCR can’t be stimulated in this oo-e anomalous dispersion circumstance, where the HW 
propagates faster than the NP for (532 ) (1064 )e on nm n nm<  in LiNbO3 [20]. The conical pattern 

was generated by the scattering assisted phase-match process [22]. The spots in the center 
were due to the nonlinear Raman-Nath diffraction. 

As to CSFG process, when the normal incident beam 
1ω  was p-polarized and the oblique 

beam 
2ω  was s-polarized, the marked outer pair of the CSFG spots in Fig. 1(d) was p-

polarized and corresponded to the oe-o phase-match type. The effective coefficient 

15 25sin coseffd d d ϕϕ= − . Considering the electric field of CSFG 
3( )zE ω  had not been observed 

in the NCR normal dispersion condition, so 
15d , 

25 0d ≠  and 
35 0d = . While 

1ω  was s-

polarized and 
2ω  was p-polarized, the figure was demonstrated in Fig. 1(e). The marked outer 

pair of the p-polarized spots were CSFGs and belonged to the eo-o phase-match type. Thus 

14 2 15 2 2 2524 2sin cos sin sin cos cos sin sineffd d d d dϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= − − + − , where 
2ϕ  is the azimuthal 

angle of the polarization of the oblique FW with respect to the positive x axis. Since no 

3( )zE ω  had been observed, we obtained 
34 0d = . 

Rotating the PPLN until its x axis was perpendicular to the platform as shown in Fig. 2(a), 
two pairs of the marked spots in the middle were CSFGs. While both 

1ω  and 
2ω  were p-

polarized, the CSFG spots in Fig. 2(b) didn’t contain the 
3( )xE ω  when checked by a polarizer. 

Considering the normal incidence was 
1( )zE ω  and the oblique incidence were 

2( )yE ω  and 

2( )zE ω , as we already had 
13 0d = , the element 

14 0d =  based on Eq. (1). 

 

Fig. 2. (a) The CSFG schematic setup. (b) The CSFG pattern on the screen when both 
1ω  and 

2ω  were p-polarized. 

3.2 NCR along the optical axis of PPLN 

As shown in Fig. 3, the CSHG and CSFG patterns had been observed when FWs were along 
the z axis of PPLN. 
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Fig. 3. (a) Schematic experimental setup. (b) The CSHG with the s-polarized normal incidence 

1ω . (c) The CSHG with the p-polarized normal incidence 
1ω . (d) The CSFG with the p-

polarized normal incidence 
1ω  and the s-polarized oblique incidence 

2ω . (e) Exchange the 

polarization of the incident beams in (d). 

As the 
1ω  was p-polarized in CSHG, the outer pair of spots in Fig. 3(b) was s-polarized 

while the inner pair was p-polarized. For the inner pair, the HW possessed the components 
(2 )xE ω  and (2 )zE ω . So the coefficients 

1 21effd d=  and 
2 11 31sin coseffd d dθ θ= − + , respectively, 

where θ  is the polar angle of the HW with respect to the positive z axis. So 
21 0d ≠  and 

11d , 

31 0d ≠  based on Eq. (1), which belonged to the oo-o and oo-e* phase-match process, 

respectively. The notation e* means that there is an angle with respect to the axis z and it’s a 
NCR process in normal dispersion. For the s-polarized incidence, two pairs of the CSHG were 
demonstrated on Fig. 3(c) and their polarization were the same as the last circumstance, where 

1 22effd d=  and 
2 12 32cos sineffd d dθ θ= − + , respectively. Therefore, 

12d , 
22d  and 

32 0d ≠  in the 

tensor. 
Regarding the CSFG shown in Fig. 3(a), when 

1ω  was p-polarized and 
2ω  was s-

polarized, the marked CSFG spots were p-polarized in Fig. 3(d) and 
16 36cos sineffd d dθ θ= − +  

in this oo-e* process. However, 
3( )xE ω  and 

3( )zE ω  had been detected but there was no 

3( )yE ω . So based on Eq. (1), 
16d , 

36 0d ≠  and 
26 0d =  in the matrix. Exchanging the 

polarization of 
1ω  and 

2ω , the inner pair of CSFG spots in Fig. 3(e) was p-polarized and the 

outer pair was s-polarized. Thus ( )1 14 2 16 2 36 2 34cos cossin cos cos 0in seffd d d d dθ θ θ θ θ θ= + =−  and 

( )2 24 2 26c s 0oeffd d dθ= − = , respectively, where 
2θ  is the polar angle of 

2ω  with respect to the 

positive z axis. Accordingly, the element 
24 0d ≠ . 

4. Summary and discussion 

The Cherenkov angles in the CSHG and CSFG processes are summarized in Table 1, which 
agrees well with the theoretical analysis. 

Table 1. Cherenkov angles of the CSHG and CSFG in LiNbO3 domain walls. 

Incidence Cherenkov 
type 

Incident 
components 

Outgoing 
components 

Phase 
match 
type 

Theoretical 
angles 
(degrees) 

Experimental 
angles 
(degrees) 

Perpendicular to 
optical axis 

CSHG 
Ez Ez ee-e 35.2 34.4 
Ex Ex,Ey oo-o 39.7 38.8 

CSFG 
Ex&Ez Ex,Ey oe-o 54.9 55.1 
Ez&Ex,Ey Ex,Ey eo-o 54.8 55.1 

Parallel to 
optical axis 
(e* means 
normal 
dispersion NCR) 

CSHG 
Ex or Ey Ey oo-o 39.7 38.7 
Ex or Ey Ex,Ez oo-e* 37.9 37.3 

CSFG 
Ex&Ey Ex,Ez oo-e* 42.7 43.3 
Ey&Ex,Ez Ex,Ez oe-e 42.9 43.3 
Ey&Ex,Ez Ey oe-o 45.1 45.6 

                                                                                                 Vol. 24, No. 26 | 26 Dec 2016 | OPTICS EXPRESS 29463 



To summarize, we get the second-order susceptibility tensor of lithium niobate domain 
walls, expressed as 

 

11 12 31 22
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 − 
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For lithium niobate, the 3 × 3 × 3 tensor of (2)
ijkχ  transforms into a 3 × 9 matrix if we merge the 

last two indices and denote each element by its Cartesian indices [1], which has the form of: 

 

(2)

0 0 0 0 0
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XZX XXZ YYY YYY

YYY YYY XXZ XZX

ZXX ZXX ZZZ
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=  
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In point group theory, the lattice of lithium niobate belongs to 
3C ν

 point group and obeys 

threefold rotational symmetry and mirror inversion symmetry, where the rotational axis is the 
z axis and the mirror plane is yz-plane perpendicular to the x axis, respectively. In detail, 
threefold rotational symmetry means the lattice of the crystal is consistent with itself under 
2

3
π  and 4

3
π  rotation around the z axis. 

In Eq. (3), the underlined zeros and other nonzero elements are determined by the 
threefold rotational symmetry of LiNbO3, and other zeros are determined by the mirror 
inversion symmetry with respect to yz-plane. Applying the Kleinman symmetry and 
contracted notion [1], we get the 3 × 6 matrix in Eq. (1). Comparing the matrix of bulk 
LiNbO3 in Eq. (1) with PPLN domain walls in Eq. (2), the double underlined elements 
become nonzero while the underlined zeros and other nonzero elements remain. Therefore, 
we can draw a conclusion that the mirror inversion symmetry is violated and the threefold 
rotational symmetry is retained. And we can conclude there is a symmetry reduction at the 
PPLN domain walls. 

5. Conclusion 

In this work, the ( )2χ  tensor of PPLN domain walls are full determined by detecting the 
polarization of CSHG and CSFG. The elements 

11d  and 
12d  in the ( )2χ  matrix are found to 

contribute to the CSHG, and in situ,
25d  and 

36d  have contribution to the CSFG, which are all 

zero in LiNbO3 bulk medium. In conclusion, we demonstrate that the mirror symmetry in 
PPLN domain walls is broken, while the threefold rotational symmetry still remains during 
the periodically poling process. Moreover, this Cherenkov measurement may find its 
application in exploring the inner structure and the susceptibility properties of domain walls in 
other ferroelectrics. 
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